将来人工智能是如何解散芯片行业的
2018-08-22 来自: 网络 浏览次数:1808
从计算的早期开始,人们就一直认为人工智能有朝一日会改变这个世界。几十年来,我们已经看到无数流行文化参考和未来主义思想家所描述的未来,但技术本身仍然难以捉摸。增量进步主要归功于边缘学术界和消费性企业研究部门。
这一切都在五年前发生了变化。随着现代深度学习的出现,我们已经看到了这项技术在行动中的真实一瞥:计算机开始看到,听到和谈论。人工智能第一次感觉有形,触手可及。
今天的人工智能开发主要围绕深度学习算法,如卷积网络,循环网络,生成对抗网络,强化学习,胶囊网等。所有这些都有一个共同点,就是它们需要大量的计算能力。为了在推广这种智能方面取得实际进展,我们需要彻底检查为这项技术提供动力的计算系统。
2009年发现GPU作为计算设备通常被视为一个关键时刻,帮助引发了围绕深度学习的寒武纪爆发。从那时起,对并行计算架构的投资爆炸式增长。谷歌TPU(Tensor Processing Unit)的兴奋就是一个很好的例子,但TPU才刚刚开始。 CB Insights的发言人告诉我的团队,仅在2017年,新的专用AI芯片创业公司就筹集了15亿美元。这太惊人了。
我们已经看到新的创业公司进入现场,挑战英特尔,AMD,Nvidia,微软,高通,谷歌和IBM等老牌企业。像Graphcore,Nervana,Cerebras,Groq,Vathys,Cambricon,SambaNova Systems和Wave Computing这样的新兴公司正在成为为深度学习的未来铺平道路的新星。虽然这些初创公司肯定资金充足,但这些都是早期的,我们还没有看到谁将成为赢家,将来会有什么样的老卫兵。
Nvidia的统治地位
Nvidia将GPU作为人工智能和深度学习的替代品引入主流。 该公司计算从消费者游戏领导者到AI芯片公司的转变一直都很不错。 就像其对Volta的30亿美元投资以及像CUDA / cuDNN这样的深度学习软件库的推动,它将其从领先地位推向市场主导地位。 去年,它的股票走到了尽头,首席执行官Jensen Huang被“财富”杂志评为年度最佳商人,并因此获得了“新英特尔”的美誉。